

SACC

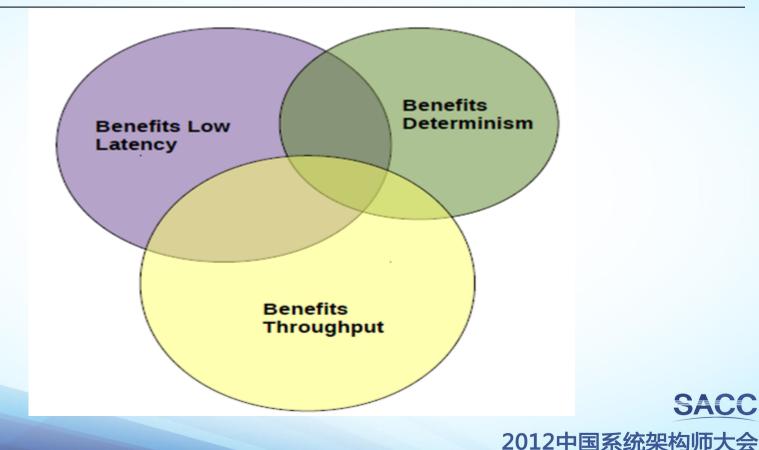
2012中国系统架构师大会

SYSTEM ARCHITECT CONFERENCE CHINA 2012

架构设计·自动化运维·云计算

打造Linux下的高性能网络

北京酷锐达信息技术有限公司 技术总监 史应生 shiys@solutionware.com.cn



BY DEFAULT, LINUX NETWORKING NOT TUNED FOR MAX PERFORMANCE, MORE FOR RELIABILITY

Trade-off :Low Latency, throughput, determinism

架构设计·自动化运维·云计算

Performance Goals

Throughput

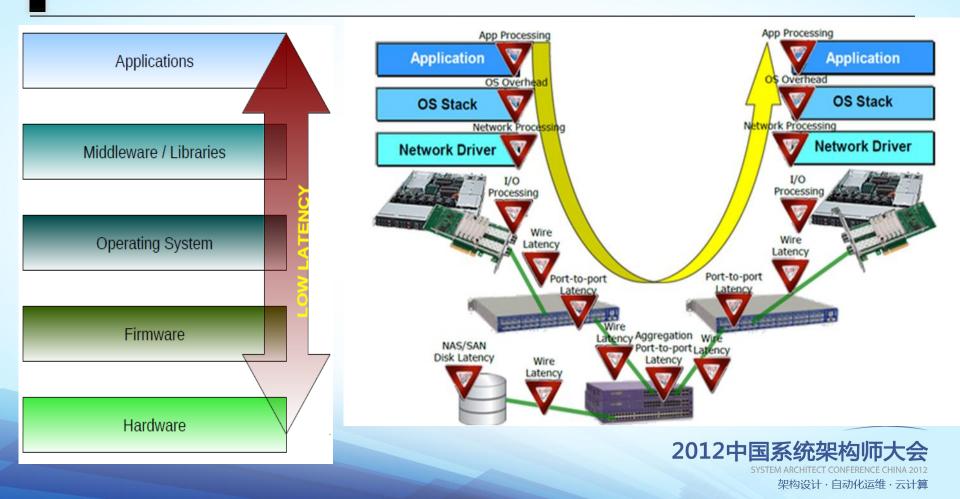
- Optimize for best average
- Default design criteria for most operating systems
- "how much can you do at a time? "

Low Latency

- Optimize for **best minimum**
- Minimize execution times for certain paths
- "what's the fastest we can push a packet out? "

Determinism

- Optimize for **best (lowest) maximum**
- Fewest/lowest outliers
- "what's the maximum time it will take?"



- 56 Gigabits per second (Unix network stack was designed for 10Mbits)
- 4-7 Gigabytes per second (Unix: 1 MB/s)
- >8 million packets per second (Unix: ~1000 packets per second).
- Less than a microsecond per packet for processing SACC

Latency Factors

BIOS Settings for Low Latency

System Setup Screen	Setting	Default	Recommended Alternative for Low- Latency Environments		
Processor Settings	Logical Processor	Enabled	Disabled		
Processor Settings	Turbo Mode	Enabled	Disabled ³		
Processor Settings	C-States	Enabled	Disabled		
Processor Settings	C1E	Enabled	Disabled		
Power Management	Power Management	Active Power Controller	Maximum Performance		

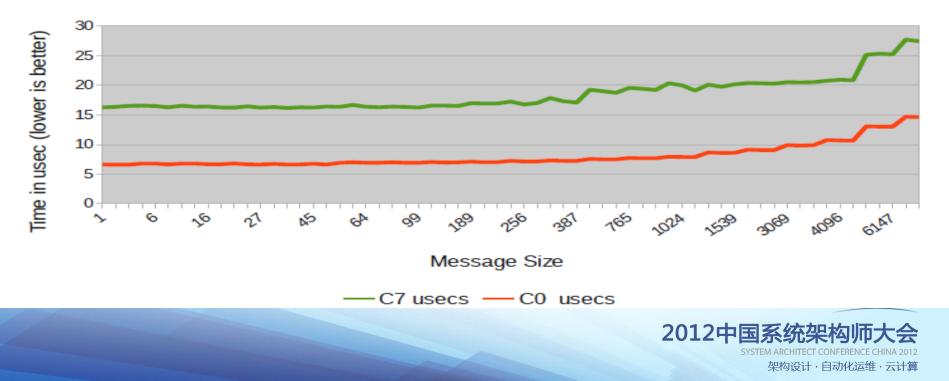
SYSTEM ARCHITECT CONFERENCE CHINA 2012 架构设计 · 自动化运维 · 云计算

CSTATE default – C7 on this config

												1				
pk	cor	CPU	%	:0	GHz	-	SC	%c1	%c3	%c6	%c7	%pc2	%pc3	%pc6	%pc7	SMIs
			0.	4	1.43	2	19	0.08	0.00	0.00	99.89	4.46	0.00	93.94	0.00	0
0	Θ	0	0.	1	1.28	2	19	0.93	0.01	0.00	98.66	3.13	0.01	93.91	0.00	0
0	1	1	0.	4	1.66	2	19	0.06	0.00	0.00	99.91	3.13	0.01	93.91	0.00	0
0	2	2	0.	1	1.73	2	19	0.01	0.00	0.00	99.98	3.13	0.01	93.92	0.00	0
0	3	3	0.	1	1.72	2	19	0.02	0.01	0.00	99.96	3.13	0.01	93.92	0.00	0
0	4	4	0.	1	1.85	2	19	0.01	0.00	0.00	99.98	3.13	0.01	93.92	0.00	0
0	5	5	0.	1	1.94	2	19	0.01	0.00	0.00	99.98	3.13	0.01	93.91	0.00	0
0	6	6	0.	1	1.92	2	19	0.02	0.00	0.00	99.98	3.13	0.01	93.91	0.00	0
0	7	7	0.	1	1.76	2	19	0.01	0.00	0.00	99.98	3.13	0.01	93.91	0.00	0
1	Θ	8	0.	1	1.71	2	19	0.02	0.01	0.00	99.96	5.80	0.00	93.96	0.00	0
1	1	9	0.	1	1.69	2	19	0.02	0.01	0.00	99.97	5.80	0.00	93.96	0.00	0
1	2	10	0.	1	1.75	2	19	0.02	0.00	0.00	99.97	5.80	0.00	93.96	0.00	0
1	3	11	0.	1	1.83	2	19	0.02	0.00	0.00	99.97	5.80	0.00	93.96	0.00	0
1	4	12	0.	1	1.84	2	19	0.02	0.00	0.00	99.97	5.80	0.00	93.96	0.00	0
1	5	13			1.91			0.02	0.00	0.00	99.98	5.80	0.00	93.96	0.00	0
1																_
1	7			1												
_	-									_						-
1 1 1	5 6 7	13 14 15	0.	1	1.96	2		0.02 0.02 0.03	0.00	0.00 0.00 0.00	99.98 99.98 99.96	5.80 5.80 5.80	0.00	93.96 93.96 93.96	0.00	0 0

CSTATE disabled – Note speed

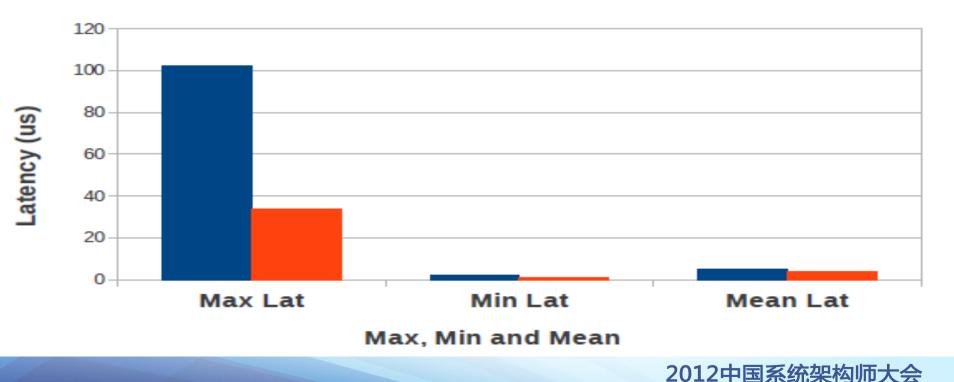
Г


pk	cor	CPU	%c0	GHz	TSC	%c1	%c3	%c6	%c7	%pc2	%pc3	%pc6	%pc7	SMIs
-			100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
0	0	0	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Θ	1	1	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
0	2	2	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Θ	3	3	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
0	4	4	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
0	5	5	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Θ	6	6	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
0	7	7	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
1	0	8	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
1	1	9	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
1	2	10	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
1	3	11	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
1	4	12	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
1	5	13	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
1	6	14	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
1	7	15	100.00	2.69	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0

NPtcp latency vs cstates – c7 vs c0

Impact of Power settings NPtcp Latency results

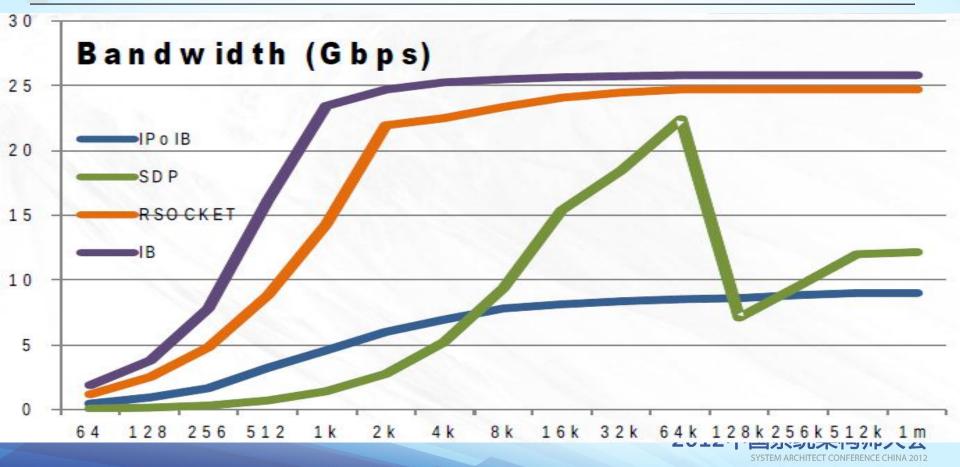
Mellanox 40 Gbit



架构设计·自动化运维·云计算

Firmware tuning impact – a drastic picture

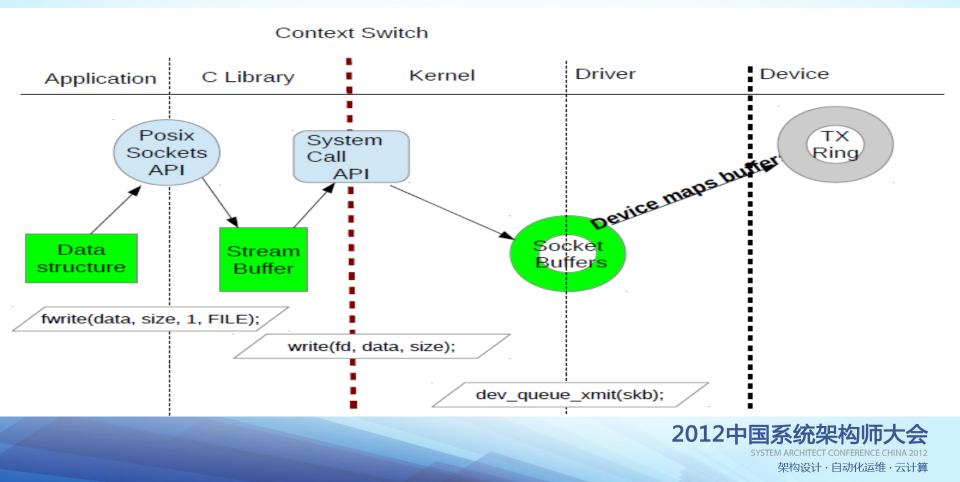
Cyclictest output with firmware changes


Different Technology To Max Performance

- IPOIB = Kernel Sockets layer using IP emulation on Infiniband.
- SDP = Kernel Sockets layer using Infiniband native connection.
- IB = Native Infiniband connection. User space \rightarrow User Space
- Rsockets = Socket Emulation layer in user space
- Performance comparison shows that kernel processing is detrimental to performance. Bypass is essential.

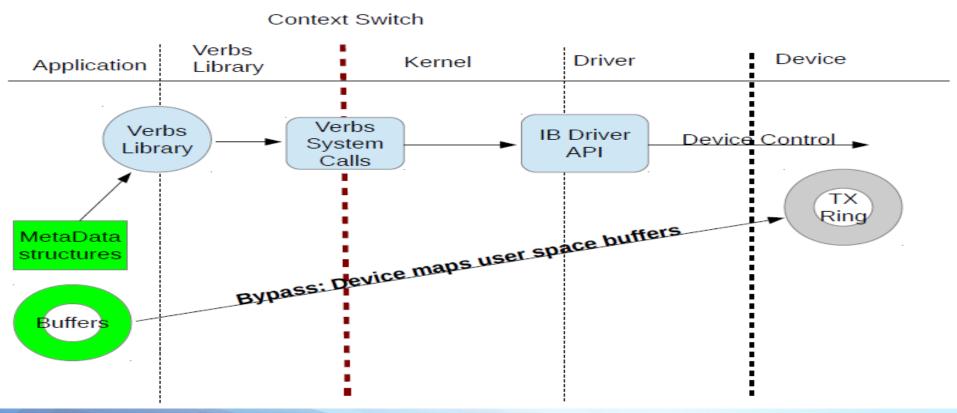
Different Technology To Max Performance

架构设计·自动化运维·云计算


架构设计·自动化运维·云计算

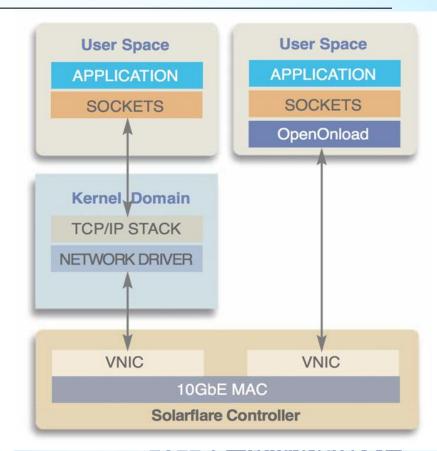
Why bypass the kernel?

- Kernel is too slow and inefficient at high packet rates. Problems already begin at 10G.
- Contemporary devices can map user space memory and perform transfer to user space.
- Kernel must copy data between kernel buffers and userspace.
- Kernel is continually regressing in terms of the overhead of basic system calls and operations. Only new hardware SACC compensates.



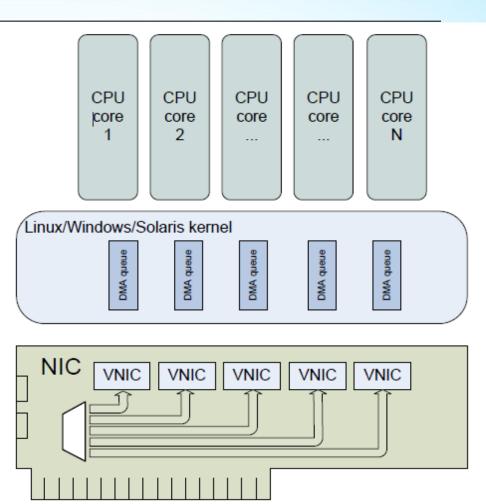
Sending a message via the sockets API

Kernel Bypass

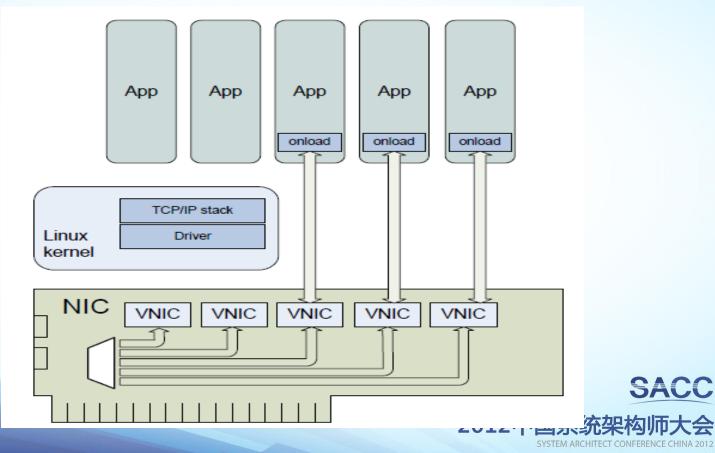


Kernel Bypass

- TCP and UDP Acceleration
 - Kernel bypass
 - App gets direct access to hardware
 - Fewer context switches, copies
 - Benchmarks
 - Reduces latency by 50%
 - Increases message rates 2x to 3x
 - "Real" applications even more benefit
- Compatibility
 - No recompile/application mods
 - Regular Ethernet/IP network
 - Unicast and multicast
 - "Just works"

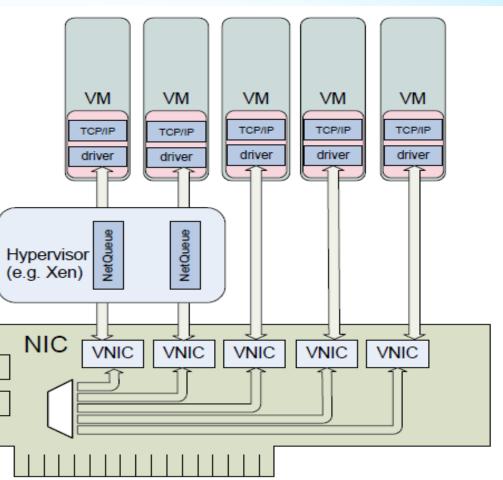


SYSTEM ARCHITECT CONFERENCE CHINA 2012 架构设计 · 自动化运维 · 云计算


VNIC per CPU core (RSS)

- RX queue per CPU core
- TX queue per CPU core
- Complete CPU core separation
- Performance scales across CPUs

Virtual NICs for application acceleration



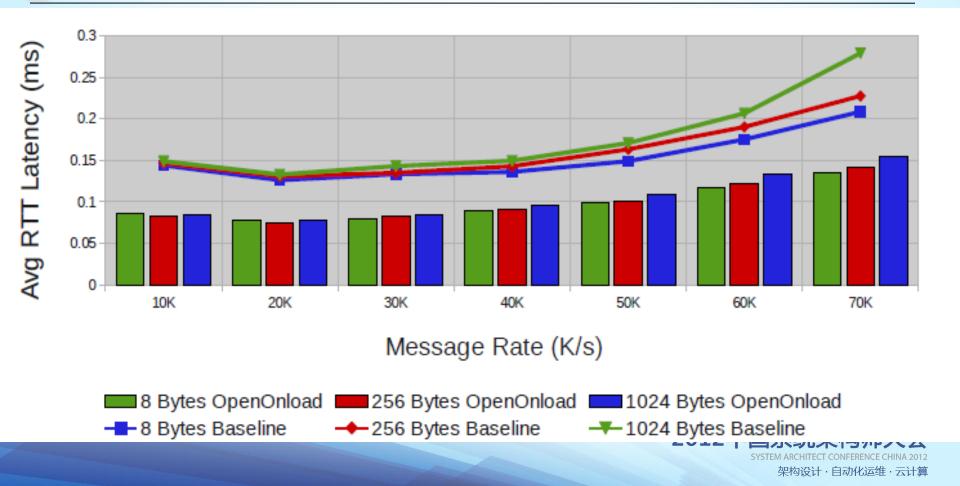
架构设计·自动化运维·云计算

Virtual NICs for VM

- Same model used for SR-IOV
- In this case VM has direct access to VNIC(s) via SR-IOV VF

Acceleration Middleware

- Just a library and a kernel module
 - No application changes
 - No recompile
 - No kernel patches
 - No protocol changes
- Picks up existing Linux network configuration
 - IP addresses and route table
 - Bonding (aka teaming)/ VLANs
 - Multicast (IGMP)
 - Kernel settings, e.g. socket buffer sizes



架构设计·自动化运维·云计算

2012中国系统架

Offload – Solarflare OpenOnload

Ethtool – View and change Ethernet card settings

- Works mostly at the HW level
 - ethtool -S provides HW level stats

Counters since boot time, create scripts to calculate diffs

- ethtool -c Interrupt coalescing
- ethtool -g provides ring buffer information
- ethtool -k provides hw assist information
- ethtool -i provides the driver information

sysctl – popular settings

These settings are often mentioned in tuning guides

- net.ipv4.tcp_window_scaling
 - toggles window scaling
- net.ipv4.tcp_timestamps
 - toggles TCP timestamp support
- net.ipv4.tcp_sack
 - toggles SACK (Selective ACK) support

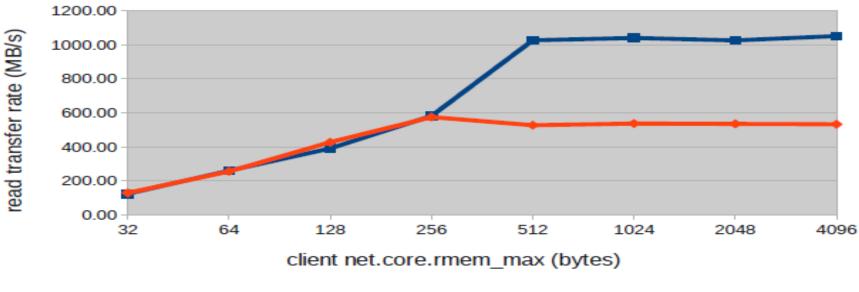
架构设计·自动化运维·云计算

sysctl – " core" memory settings

CORE memory settings

- net.core.(r/w)mem_max
 - max size of (r/w)x socket buffer
- net.core.(r/w)mem_default
 - default (r/w)x size of socket buffer
- net.core.optmem_max
 - maximum amount of option memory buffers
- net.core.netdev_max_backlog
 - how many unprocessed rx packets before kernel starts to drop

These settings also impact UDP !


SACC

架构设计·自动化运维·云计算

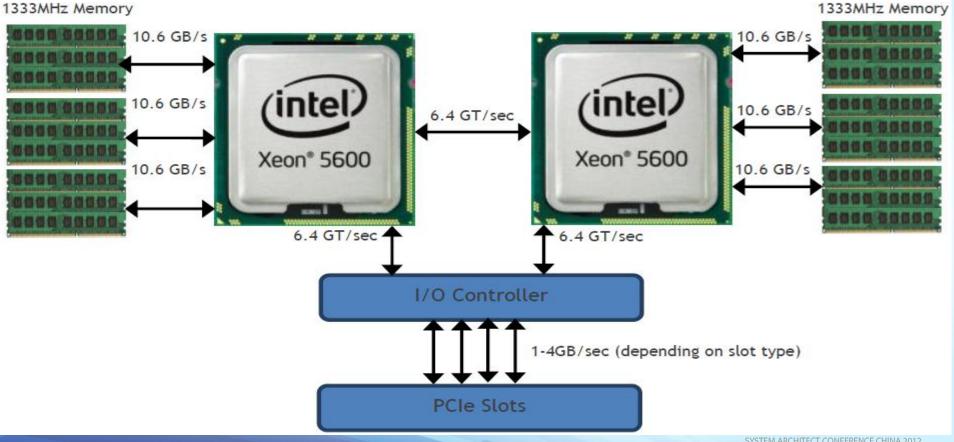
2012中国系统架构

Effect of net.core.rmem_max on read throughput

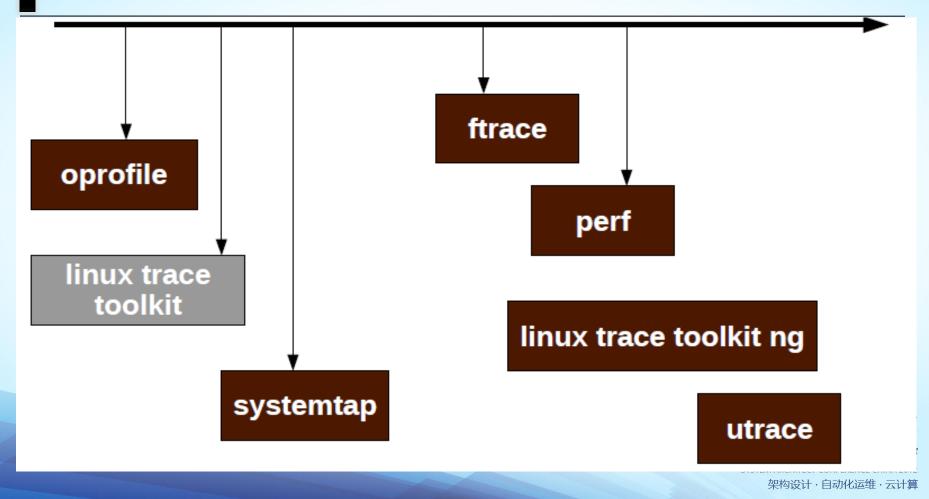
server net.core.wmem_max tuned (4.2 MB) vs untuned (128-KB)

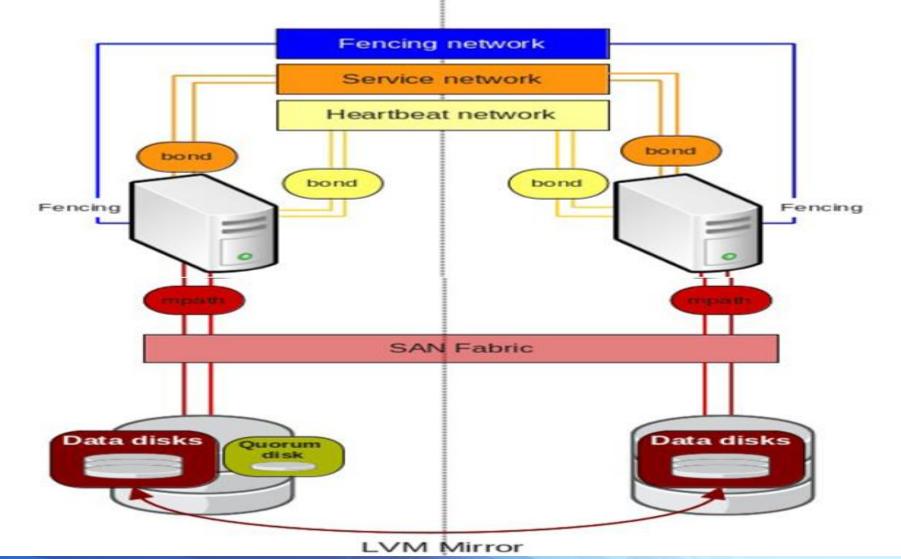
Offload is

- Replacement of what could be done in software with dedicated hardware.
- Overlaps with Bypass because direct device
 interactions replaces software action in the kernel
 through the actions of a hardware device.
- Typical case of hardware offload: DMA engines, GPUs,
 Rendering screens, cryptography, TCP (TOE), FPGAs_{BACC}


Network Card Hardware Tuning

- Jumbo Frames
- Transmission queue
- Multi streams
- interrupt moderation
- RX, TX checksum offload
- TCP Segmentation Offload
- TCP Large Receive Offload (LRO)


Numa In Network Transfer



架构设计、自动化运维、云计算

Performance diagnostic tools

Coming in 2013

- 100 GB/sec networking
- >100 GB/sec SSD / Flash devices
- More cores in Intel processors.
- GPUs already support thousands of hardware threads.
 Newer models will offer more.

Who Are We?

中国领先的Linux全面解决方案提供商

架构设计·自动化运维·云计算

服务 形式	现场	服务		远程服务(电话和邮件)						
知识	专题/定制		通用	基于项目	∃	技术讨论会				
传递	培	ᆒ		知识传授						
咨询	常规		高	级	标准化					
迁移 移植	迁移计划		应用	移植	应用迁移					
全面 解决 方案	双机热备高可用氛	長群	系统备任	分和恢复	统一身份认证和管理					
	自动化定制 安装光盘	NK NK	充安全加固	升级/补〕 生命周期管		系统监控和报警				
操作 系统	RHEL(红帽企业版Linux操作系统)									
虚拟化 云计算	服务器虚拟	化解决	方案	桌面虚拟化解决方案						
			RHEV (红帽企	主业版虚拟化)						

Join Us

hr@solutionware.com.cn

TEM ARCHITECT CONFERENCE CHINA 2013

Q&A

