
打造Linux下的高性能网络

 北京酷锐达信息技术有限公司
 技术总监 史应生

 shiys@solutionware.com.cn

BY DEFAULT, LINUX NETWORKING

NOT TUNED FOR MAX PERFORMANCE,

MORE FOR RELIABILITY

Trade-off :Low Latency, throughput, determinism

Performance Goals

 Throughput

– Optimize for best average

– Default design criteria for most operating systems

– "how much can you do at a time?“

 Low Latency

– Optimize for best minimum

– Minimize execution times for certain paths

– "what's the fastest we can push a packet out?“

 Determinism

– Optimize for best (lowest) maximum

– Fewest/lowest outliers

– "what's the maximum time it will take?"

State of the Art NIC characteristics

 56 Gigabits per second (Unix network stack was

designed for 10Mbits)

 4-7 Gigabytes per second (Unix: 1 MB/s)

 >8 million packets per second (Unix: ~1000 packets

per second).

 Less than a microsecond per packet for processing.

Latency Factors

BIOS Settings for Low Latency

CSTATE default – C7 on this config

CSTATE disabled – Note speed

NPtcp latency vs cstates – c7 vs c0

Firmware tuning impact – a drastic picture

Different Technology To Max Performance

 IPOIB = Kernel Sockets layer using IP emulation on Infiniband.

 SDP = Kernel Sockets layer using Infiniband native connection.

 IB = Native Infiniband connection. User space → User Space

 Rsockets = Socket Emulation layer in user space

 Performance comparison shows that kernel processing is detrimental

to performance. Bypass is essential.

Different Technology To Max Performance

Why bypass the kernel?

 Kernel is too slow and inefficient at high packet rates. Problems

already begin at 10G.

 Contemporary devices can map user space memory and

perform transfer to user space.

 Kernel must copy data between kernel buffers and userspace.

 Kernel is continually regressing in terms of the overhead of

basic system calls and operations. Only new hardware

compensates.

Sending a message via the sockets API

Kernel Bypass

Kernel Bypass

VNIC per CPU core (RSS)

 RX queue per CPU core

 TX queue per CPU core

 Complete CPU core separation

 Performance scales across CPUs

Virtual NICs for application acceleration

Virtual NICs for VM

 Same model used for SR-IOV

 In this case VM has direct

 access to VNIC(s) via SR-IOV VF

Acceleration Middleware

 Just a library and a kernel module

– No application changes

– No recompile

– No kernel patches

– No protocol changes

 Picks up existing Linux network configuration

– IP addresses and route table

– Bonding (aka teaming)/ VLANs

– Multicast (IGMP)

– Kernel settings, e.g. socket buffer sizes

Offload – Solarflare OpenOnload

Ethtool – View and change Ethernet card settings

 Works mostly at the HW level

– ethtool -S – provides HW level stats

 Counters since boot time, create scripts to calculate diffs

– ethtool -c - Interrupt coalescing

– ethtool -g - provides ring buffer information

– ethtool -k - provides hw assist information

– ethtool -i - provides the driver information

sysctl – popular settings

 These settings are often mentioned in tuning guides

– net.ipv4.tcp_window_scaling

• toggles window scaling

– net.ipv4.tcp_timestamps

• toggles TCP timestamp support

– net.ipv4.tcp_sack

• toggles SACK (Selective ACK) support

sysctl – ”core” memory settings

 CORE memory settings

– net.core.(r/w)mem_max

• max size of (r/w)x socket buffer

– net.core.(r/w)mem_default

• default (r/w)x size of socket buffer

– net.core.optmem_max

• maximum amount of option memory buffers

– net.core.netdev_max_backlog

• how many unprocessed rx packets before kernel starts to drop

 These settings also impact UDP !

Effect of net.core.rmem_max on read throughput

Offload is

 Replacement of what could be done in software with

dedicated hardware.

 Overlaps with Bypass because direct device

interactions replaces software action in the kernel

through the actions of a hardware device.

 Typical case of hardware offload: DMA engines, GPUs,

Rendering screens, cryptography, TCP (TOE), FPGAs.

Network Card Hardware Tuning

 Jumbo Frames

 Transmission queue

 Multi streams

 interrupt moderation

 RX, TX checksum offload

 TCP Segmentation Offload

 TCP Large Receive Offload (LRO)

Numa In Network Transfer

Performance diagnostic tools

Performance diagnostic tools

Coming in 2013

 100 GB/sec networking

 >100 GB/sec SSD / Flash devices

 More cores in Intel processors.

 GPUs already support thousands of hardware threads.

Newer models will offer more.

Who Are We?

中国领先的Linux全面解决方案提供商

Join Us

hr@solutionware.com.cn

Q&A

