
打造Linux下的高性能网络

 北京酷锐达信息技术有限公司
 技术总监 史应生

 shiys@solutionware.com.cn

BY DEFAULT, LINUX NETWORKING

NOT TUNED FOR MAX PERFORMANCE,

MORE FOR RELIABILITY

Trade-off :Low Latency, throughput, determinism

Performance Goals

 Throughput

– Optimize for best average

– Default design criteria for most operating systems

– "how much can you do at a time?“

 Low Latency

– Optimize for best minimum

– Minimize execution times for certain paths

– "what's the fastest we can push a packet out?“

 Determinism

– Optimize for best (lowest) maximum

– Fewest/lowest outliers

– "what's the maximum time it will take?"

State of the Art NIC characteristics

 56 Gigabits per second (Unix network stack was

designed for 10Mbits)

 4-7 Gigabytes per second (Unix: 1 MB/s)

 >8 million packets per second (Unix: ~1000 packets

per second).

 Less than a microsecond per packet for processing.

Latency Factors

BIOS Settings for Low Latency

CSTATE default – C7 on this config

CSTATE disabled – Note speed

NPtcp latency vs cstates – c7 vs c0

Firmware tuning impact – a drastic picture

Different Technology To Max Performance

 IPOIB = Kernel Sockets layer using IP emulation on Infiniband.

 SDP = Kernel Sockets layer using Infiniband native connection.

 IB = Native Infiniband connection. User space → User Space

 Rsockets = Socket Emulation layer in user space

 Performance comparison shows that kernel processing is detrimental

to performance. Bypass is essential.

Different Technology To Max Performance

Why bypass the kernel?

 Kernel is too slow and inefficient at high packet rates. Problems

already begin at 10G.

 Contemporary devices can map user space memory and

perform transfer to user space.

 Kernel must copy data between kernel buffers and userspace.

 Kernel is continually regressing in terms of the overhead of

basic system calls and operations. Only new hardware

compensates.

Sending a message via the sockets API

Kernel Bypass

Kernel Bypass

VNIC per CPU core (RSS)

 RX queue per CPU core

 TX queue per CPU core

 Complete CPU core separation

 Performance scales across CPUs

Virtual NICs for application acceleration

Virtual NICs for VM

 Same model used for SR-IOV

 In this case VM has direct

 access to VNIC(s) via SR-IOV VF

Acceleration Middleware

 Just a library and a kernel module

– No application changes

– No recompile

– No kernel patches

– No protocol changes

 Picks up existing Linux network configuration

– IP addresses and route table

– Bonding (aka teaming)/ VLANs

– Multicast (IGMP)

– Kernel settings, e.g. socket buffer sizes

Offload – Solarflare OpenOnload

Ethtool – View and change Ethernet card settings

 Works mostly at the HW level

– ethtool -S – provides HW level stats

 Counters since boot time, create scripts to calculate diffs

– ethtool -c - Interrupt coalescing

– ethtool -g - provides ring buffer information

– ethtool -k - provides hw assist information

– ethtool -i - provides the driver information

sysctl – popular settings

 These settings are often mentioned in tuning guides

– net.ipv4.tcp_window_scaling

• toggles window scaling

– net.ipv4.tcp_timestamps

• toggles TCP timestamp support

– net.ipv4.tcp_sack

• toggles SACK (Selective ACK) support

sysctl – ”core” memory settings

 CORE memory settings

– net.core.(r/w)mem_max

• max size of (r/w)x socket buffer

– net.core.(r/w)mem_default

• default (r/w)x size of socket buffer

– net.core.optmem_max

• maximum amount of option memory buffers

– net.core.netdev_max_backlog

• how many unprocessed rx packets before kernel starts to drop

 These settings also impact UDP !

Effect of net.core.rmem_max on read throughput

Offload is

 Replacement of what could be done in software with

dedicated hardware.

 Overlaps with Bypass because direct device

interactions replaces software action in the kernel

through the actions of a hardware device.

 Typical case of hardware offload: DMA engines, GPUs,

Rendering screens, cryptography, TCP (TOE), FPGAs.

Network Card Hardware Tuning

 Jumbo Frames

 Transmission queue

 Multi streams

 interrupt moderation

 RX, TX checksum offload

 TCP Segmentation Offload

 TCP Large Receive Offload (LRO)

Numa In Network Transfer

Performance diagnostic tools

Performance diagnostic tools

Coming in 2013

 100 GB/sec networking

 >100 GB/sec SSD / Flash devices

 More cores in Intel processors.

 GPUs already support thousands of hardware threads.

Newer models will offer more.

Who Are We?

中国领先的Linux全面解决方案提供商

Join Us

hr@solutionware.com.cn

Q&A

