
MySQL for the Web
Some experience of hacking/extending MySQL

汪 源
⺴⽹网易.杭州研究院.副院⻓长

@⺴⽹网易汪源

SACC2012SACC2012

A-PDF Watermark DEMO: Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?wm-demo

MySQL
Projects@NetEase

• Distributed RDBMS: based on MySQL

• Customized storage engine: Transactional
or Non-transactional

• Open source MySQL branch: InnoSQL

Outline

• Scale out MySQL

• Consistent Memcached integration

• Layered approach for storage engine design

• Scalable RW lock and intention lock

• Dynamic schema

• Tailoring row level cache

• Flash cache in InnoSQL
SACC2012SACC2012

Architecture
Zookeeper

LVS

SQL
Proxy

SQL
Proxy

SQL
Proxy

MySQL MySQL MySQL

Client

Master
(Active)

Master
(Standby)

SYSDB
Master

SYSDB
Slave

MySQL Protocol

Load balancing

Sharding

Sharding
• Sharding methods

• Based on one or multiple columns

• Hashing or UDF

• Mapping cached on every SQL proxy server

• Policy

• Several table can use same sharding policy

• FK reference is common

• EQUI-JOIN on sharding column on tables belongs to the
same policy becomes local join.

SACC2012SACC2012

Scalability
• Almost online, sub minute of downtime

• Based on MySQL replication and query rewriting on SQL proxy

• Scale out procedure

• Make two slaves, A1 and A2, for MySQL server A

• Delete unneeded data on A1 and A2

• Waiting for A1 and A2 to catch up

• Block access to A

• Waiting for A1 and A2 to catch up

• Start rewriting on SQL proxies, adding some conditions to filter out unneeded data
on A1 and A2

• Switch to A1 and A2

• Delete unneeded data on A1 and A2 again

• Stop rewriting on SQL proxies

Distributed queries

• Support: distributed GROUPBY/AGG/HAVING, ORDER
BY, LIMIT/OFFSET, EQUI-JOIN

• Not support: subquery

查询计划

SN 1

SELECT * FROM T
WHERE a = 1
ORDER BY b
LIMIT 100 OFFSET 100

SELECT * FROM T
WHERE a = 1
ORDER BY b LIMIT 200

SELECT * FROM T
WHERE a = 1
ORDER BY b LIMIT 200

SN 2

语法

解析

计划

生成

计划

执行

MERGE
SORT

LIMIT

SN1, SN2

T, a=1

存储映射表

根据“ 存 映射表”
与 条件，可决定
相关存 点

各后台数据
果，按b排好序

ORDER BY b

LIMIT 100
OFFSET 100

查询结果

送 后台的
SQL 句句，可能
与原 句句不不同

SACC2012SACC2012

Distributed
transactions(1)

• We use 2PC in production for many years without complaints

• Distributed transactions are rare in execution(3%) but common in code(30%)

• SQL proxy server as coordinator

• Logging 2PC decisions

• If SQL proxy server fails and can not come back soon (say, after 10 minutes),
Master will rollback XA transactions blindly

• Limited support for XA transactions of MySQL

• Rollback PREPARED transactions after client disconnect or safe shutdown

• We fix it

• Missing PREPARED transactions in binlog after crash

• Not fixed

Distributed
transactions(2)

• Can not get consistent global snapshot

• Scenario

• T1: read MySQL server 1

• T2: update MySQL server 1 and MySQL server 2, PREPARE and
COMMIT

• T1: read MySQL server 2

• However, nobody complains

• Future plan

• Put XA logs in high available shared storage

• consistent global snapshot is hard

• 2PL is not acceptable

SACC2012SACC2012

High availability
• SYSDB

• Based on replication or DRBD and Linux-HA

• Master

• Master is stateless, all state is in SYSDB (cache state in memory)

• Two masters compete on Zookeeper lease

• New master read all state from SYSDB before going to service

• SQL proxy server

• LVS load balancing

• MySQL

• Same as SYSDB

• Issues

• XA logs on SQL proxy server is not HA

• DRBD and Linux-HA is overkill but replication is not safe.

Other interesting
findings

• Read replica is useless

• Transactions are more important than
expected

• Although distributed transactions and
queries are not always ACID

SACC2012SACC2012

Outline

• Scale out MySQL

• Consistent Memcached integration

• Layered approach for storage engine design

• Scalable RW lock and intention lock

• Dynamic schema

• Tailoring row level cache

• Flash cache in InnoSQL

Typical usage of
Memcached

• Query

• Search Memcached(GET)

• If miss

• Fetch from DBMS

• Put into Memcached(SET/ADD)

• Update

• Method 1

• Remove from Memcached(DELETE)

• Update database

• Method 2

• Update database

• UpdateMemcached(SET)

SACC2012SACC2012

Inconsistency is easy
• Suppose there is an object O(k:v1), not in Memcached initially.

And suppose there are transactions T1(get O) and T2(update
O) acting as follows:

• T1: searches Memcached for O, miss

• T1: reads O from DBMS, got(k:v1)

• T2: deletes O from DBMS, miss

• T1: puts O(k:v1) into Memcached

• T2: updates O in DBMS to (k:v2)

• DBMS left with O(k:v2) and Memcached with O(k:v1),
inconsistency

Seems better
• SET in update, ADD in query

• T2 follows T1

• T1: searches Memcached for O, miss

• T1: reads O(k:v1) from DBMS and ADD into Memcached

• T2: updates DBMS to (k:v2)

• T2: SET Memcached to (k:v2)

• T1 follows T2

• T1: searches Memcached for O, miss. Read O(k:v1) from DBMS

• T2: updates DBMS to (k:v2)

• T2: SET Memcached to (k:v2)

• T1: tries to ADD O(k:v1) to Memcached, skip for already exist

• DBMS and Memcached converge to (k:v2) in both scenarios.

SACC2012SACC2012

Inconsistency still
possible

• Inconsistency scenarios

• Updated item (k:v2) of T2 is replaced, then T1’s ADD(k:v1) will succeed

• If T2 commits after updating Memcached, then:

• If T2 aborts with failure, DBMS rollback but not Memcached

• If T2 commits before updating Memcached, then:

• If failure before updating Memcached, Memcached will not get update

• Two concurrent update transactions leads to inconsistency

• T2: updates DBMS to (k:v2) and commit

• T3: updates DBMS to (k:v3) and commit

• T3: SET Memcached to (k:v3)

• T2: SET Memcached to (k:v2)

• Anyway, SET in update, ADD in query, update Memcached after update DBMS but before
commit is much safer.

Is strict consistency
possible?

SACC2012SACC2012

Traditional wisdom

ACID System ACID System

Larger ACID System

2PC+2PL

ACID System Non ACID
System

No Consistency at All

SYSTEM

A consistent protocol
• Query

• GET from Memcached, return if hit a normal row.

• ADD LOCK row with value 0 into Memcached and GETS the version

• Read DBMS

• CAS the LOCK to the record if GETS got a LOCK row with value 0

• Update

• Set a lock, repeating

• GETS from Memcached

• If miss, ADD LOCK row with value 1 into Memcached, end repeating if succeed

• If got a normal row, CAS to LOCK row with value 1, end repeating if succeed

• If got a LOCK row, CAS to LOCK row with value old value +1, end repeating if
succeed

• Update DBMS and commit

• DECR the lock rowSACC2012SACC2012

Protocol cont.

• How consistency is guaranteed

• LOCK row is a hint that someone is updating the DBMS, value
of the LOCK row is the number of clients that are updating

• Failsafe

• Query fails, nothing happens

• Update fails, remaining LOCK count will prevent loading
into Memcached, some performance lost but no
consistency

• LOCK row can have a modest expiration time

• Entity level consistency only

Consistent friendly
cache

• Operation requirements

• GET

• GETS

• ADD

• CAS

• DECR:

• Other requirements

• Version number can not go back even after crash

• LOCK rows can not be swapped out

• Can not restart Memcached too fast, must wait for existing update
complete

SACC2012SACC2012

New wisdom

ACID System Consistent
Friendly Cache

Entity Level Consistent System

SYSTEM

Outline

• Scale out MySQL

• Consistent Memcached integration

• Layered approach for storage engine design

• Scalable RW lock and intention lock

• Dynamic schema

• Tailoring row level cache

• Flash cache in InnoSQL
SACC2012SACC2012

Traditional monolithic
design

• Transaction manager(TM) and data manager(DM) are tightly
coupled

• Locking is based on physical RID

• Locking is done in data management

• Holding the latch and trylock

• If fails, unlatch, lock and recheck

• Versioning info is embedded in physical records and pages

• Logging is done while holding latch and recovery in based
on physical info (pageLSN)

Why decouple TM and
DM

• For flexibility

• Transactional and non-transactional in the same storage engine

• Dynamic shifting between transactional and non-transactional

• For performance

• Want multi versioning but don’t want versioning info overhead

• Versioning info should be only in memory for active
transactions

• For a new way to database design

• Scalable transaction processing on HBase (HBase as DM)?

SACC2012SACC2012

How to decouple?
Simple but bad way

• No secondary index
scan

• No snapshot
isolation

TM using 2PL

DM with KV
interface

Logical logs

Data Physical logs

No conflicting
operations

Record level
atomicity

All operations
come with PK

The TNT way
• Multi-versioning. However version info only in memory

• Record level version info for heap record

• Page level version for index. Low overhead but achieves coverage
index scan most of the time(same as InnoDB)

• No version info for BLOB, use Copy-on-write

• Operations

• INSERT goes to DM directly but put version info in memory

• UPDATE/DELETE goes to memory

• Most recent record version in memory, but older versions in version
pool

• Purge committed modification to DM periodically

SACC2012SACC2012

Benefits of the TNT
way

• Can do secondary index scan

• Can do coverage index scan

• Minimal multi-versioning overhead

• Page level version info for index

• No version info in DM

• Low memory consumption

• Only most recent version must be kept in memory

• INSERT goes to DM directly, only version info in memory

• Unmodified index has no new versions

Compared to Falcon
• Falcon

• Recognized to be the future of MySQL storage engine but failed

• Designed by famous database guru, Jim Starkey, father of
InterBase(the first RDBMS supporting multi-versioning)

• Multi-versions in memory and single version on disk, same as TNT

• Major problems of Falcon

• Every unmerged transaction has his own modified index, so read
has to merge lots of tiny indice

• Can not do coverage index scan

• New records go to memory, so memory comsuption is higher
than TNT

SACC2012SACC2012

Preliminary
performance result

New wisdom

• Efficient general transaction processing can
be built upon an entity level consistent DM
with little overhead

• With secondary index scan

• With coverage index scan

• With snapshot isolation

SACC2012SACC2012

Outline

• Scale out MySQL

• Consistent Memcached integration

• Layered approach for storage engine design

• Scalable RW lock and intention lock

• Dynamic schema

• Tailoring row level cache

• Flash cache in InnoSQL

Locks in storage engine
• RWLock

• Catalog lock: lock the catalog to search for the table structure used in
query

• Table definition lock: lock the table definition to prevent DDLs

• Row lock: lock the rows touched by the transaction

• Page latch: lock the pages touched by the transaction

• Table level intention lock

• Common multi-level lock strategy in DBMS

• IS: Typical SELECTs

• IX: Typical INSERT/UPDATE/DELETEs

• SIX/S/X: Lock upgrade for big transactions

SACC2012SACC2012

No scalability
bottleneck?

• Row lock and page latch: There are many of
them, so conflicts will not be too often

• Catalog lock, table definition lock and
intention lock: They don’t conflict for
typical transaction processing, so no
contentions at all

• Wrong. Those don’t conflict logically could
be scalability bottleneck in practice

Scalability of reader
lock

• Intel Xeon E5645*2,12
Cores, 24 Threads

• Optimized RWLock with
single CAS instruction to
acquire reader lock

• Throughput drops sharply
from single thread to multi-
thread

• Due to frequent cache
invalidation 0

12.50

25.00

37.50

50.00

1 2 4 8 16 32 64

OPS(in millions)

SACC2012SACC2012

Scalable Rwlock
• Scalable Rwlock := A collection or normal RWLocks

• Collection size is number of CPU cores in typical setting

• Each normal RWLock is in his own cache line

• rdlock

• Got corresponding normal RWLock

• Acquire reader lock for that lock

• wrlock

• Acquire all writer locks in the same order

• Scalable and fast for rdlock, slow and not scalable for wrlock

Scalable intention lock

• A hierarchy of scalable
RWLock and
RedBlackLock

• Scalable RedBlackLock

• Red: Lock
corresponding lock in
red

• Black: Lock all locks in
black

• Scalable and fastest for IS,
scalable and fast for IX,
slow and not scalable for
others

s-rwlock

s-rwlock

s-rblock

IS X

IX S

SIX

r
w

r
w

r

w

b

SACC2012SACC2012

Benchmark result

0

3.75

7.50

11.25

15.00

1 2 4 8 16 32 64

IX

O
PS

(in
 m

ill
io

ns
)

Threads

Normal Scalable

0

7.50

15.00

22.50

30.00

1 2 4 8 16 32 64

IS

O
PS

(in
 m

ill
io

ns
)

Threads

Normal Scalable

CPU: 8Cores

Outline

• Scale out MySQL

• Consistent Memcached integration

• Layered approach for storage engine design

• Scalable RW lock and intention lock

• Dynamic schema

• Tailoring row level cache

• Flash cache in InnoSQL
SACC2012SACC2012

Why dynamic schema?

• InnoDB becomes readonly during ADD/
REMOVE columns

• Online schema change can be done using
replication or trigger, however you might
have to wait for hours or even days

• NoSQL is cool. They have no schema and all
headaches are gone

• Are RDBMS doomed? No!

How to do

• Quite simple

• Modify metadata only when ADD/REMOVE
columns

• Valid column number in every record

• Missing column is filled automatically using
default value and removed column is skipped

• Why others didn’t do this? Hard to understand

SACC2012SACC2012

Best of the two worlds?

Flexible schame
Consistency
enforcement

Traditional
RDBMS

NoSQL

TNT/NTSE

No Yes

Yes(Schemaless) No

Yes(Has schema, on
the fly modification) Yes

Outline

• Scale out MySQL

• Consistent Memcached integration

• Layered approach for storage engine design

• Scalable RW lock and intention lock

• Dynamic schema

• Tailoring row level cache

• Flash cache in InnoSQL
SACC2012SACC2012

Why row cache?
• No well known database have row cache

• We have Memcached

• So why integrated row cache?

• Consistency: Data consistency in Memcached can not be
guaranteed in general

• We only achieve entity level consistency with great effort

• Productivity: Many codes for Memcached and error prone

• Performance

• No network round-trips for manipulating two datasets

Challenges

• Various object size

• Very small object size(10s-100s in Byte)

• Frequent updates

• Competes with page cache

SACC2012SACC2012

For various object
size(1)

• Memory management is nothing special,
just a slab allocator.

MMS

TableX

TableY

RPCls(<48)

RPCls(49-64)

RPCls(65-80)

Page Page Page

HDR SLOT
64B

SLOT
64B

SLOT
64B

SLOT
64B

For various object
size(2)

• Replacement policy

• Local row level replacement in same RPCls

• Global page level replacement

• Minimal heap of FPage(access frequency of page). We can not use LRU
list here.

• FPage = (access frequency of hotest row in page + access frequency of
coldest row in page)/2

• access frequency of row = 1/(now() - atime)

• How to choose between these two replacement policy?

• A background thread do page level replacement periodically and do row
replacement in all other situations

• No good measurement to justify the choice

SACC2012SACC2012

For small object size

• Compact row level LRU

• Standard way: Doubly linked list, 16 bytes per
row is a huge overhead

• NTSE’s way: 2 bytes local LRU in page +
minimal heap of page based on atime of coldest
row in page => near 2 bytes global LRU

• Compact RID->MMSRecord mapping

• Compact linear hash, 16 bytes/row

For frequent updates
• Can do writeback on updates is a huge advantage over Memcached

• However, a major problem: Lots of IO for flushing dirty records

• First try: Make random IO to sequential IO by sorting dirty records

• This helps in small scale but not enough when row cache is 10s
of GBs

• Second try: Dump dirty records to log if their corresponding pages
are not in page cache

• This solves the problem when row cache is 10s of GBs

• We don’t know what will happen when row cache is > 100GB

• what goes around comes around(出来混总是要还的)

SACC2012SACC2012

Coexistence with page
cache

• A hard problem for DBA: How much memory for row cache
and how much for page cache?

• InnoDB’s DBA is happy: Just throw all memory to InnoDB’s
page buffer

• NTSE’s way

• Size of row cache + page cache is fixed

• Size of row cache or page cache can be changed online

• Lots of statistics for DBA to guess a good balance between
row cache and page cache

• Rule of thumb: 80% to row cache

Outline

• Scale out MySQL

• Consistent Memcached integration

• Layered approach for storage engine design

• Scalable RW lock and intention lock

• Dynamic schema

• Tailoring row level cache

• Flash cache in InnoSQL
SACC2012SACC2012

Architecture

• SSD as a (much) bigger
doublewrite buffer

• read cache/write back

• no random write to SSD

Performance

• Even higher than on SSD

• And higher than Facebook’s flashcache(not
shown)SACC2012SACC2012

General vs. Specialized
• Why InnoSQL’s FC is much more effective than

general system level solutions?

• Half write IOPS

• No need to update original pages

• No realtime mapping index update

• space_id and page_offset at the header

• No double caching in memory and SSD, caching
clean pages after swapped out from memory

