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MySQL 
Projects@NetEase

• Distributed RDBMS: based on MySQL

• Customized storage engine: Transactional 
or Non-transactional

• Open source MySQL branch: InnoSQL



Outline

• Scale out MySQL

• Consistent Memcached integration

• Layered approach for storage engine design

• Scalable RW lock and intention lock

• Dynamic schema

• Tailoring row level cache

• Flash cache in InnoSQL
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Sharding
• Sharding methods

• Based on one or multiple columns

• Hashing or UDF

• Mapping cached on every SQL proxy server

• Policy

• Several table can use same sharding policy

• FK reference is common

• EQUI-JOIN on sharding column on tables belongs to the 
same policy becomes local join.
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Scalability
• Almost online, sub minute of downtime

• Based on MySQL replication and query rewriting on SQL proxy

• Scale out procedure

• Make two slaves, A1 and A2, for MySQL server A

• Delete unneeded data on A1 and A2

• Waiting for A1 and A2 to catch up

• Block access to A

• Waiting for A1 and A2 to catch up

• Start rewriting on SQL proxies, adding some conditions to filter out unneeded data 
on A1 and A2

• Switch to A1 and A2

• Delete unneeded data on A1 and A2 again

• Stop rewriting on SQL proxies



Distributed queries

• Support: distributed GROUPBY/AGG/HAVING, ORDER 
BY, LIMIT/OFFSET, EQUI-JOIN

• Not support: subquery

查询计划

SN 1

SELECT * FROM T 
WHERE a = 1 
ORDER BY b
LIMIT 100 OFFSET 100

SELECT * FROM T
WHERE a = 1 
ORDER BY b LIMIT 200

SELECT * FROM T
WHERE a = 1 
ORDER BY b LIMIT 200

SN 2

语法

解析

计划

生成

计划

执行

MERGE 
SORT

LIMIT

SN1, SN2

T, a=1

存储映射表

根据“ 存 映射表”
与 条件，可决定
相关存 点

各后台数据
果，按b排好序

ORDER BY b

LIMIT 100
OFFSET 100

查询结果

送 后台的
SQL 句句，可能
与原 句句不不同
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Distributed 
transactions(1)

• We use 2PC in production for many years without complaints

• Distributed transactions are rare in execution(3%) but common in code(30%)

• SQL proxy server as coordinator

• Logging 2PC decisions

• If SQL proxy server fails and can not come back soon (say, after 10 minutes), 
Master will rollback XA transactions blindly

• Limited support for XA transactions of MySQL

• Rollback PREPARED transactions after client disconnect or safe shutdown

• We fix it

• Missing PREPARED transactions in binlog after crash

• Not fixed



Distributed 
transactions(2)

• Can not get consistent global snapshot

• Scenario

• T1: read MySQL server 1

• T2: update MySQL server 1 and MySQL server 2, PREPARE and 
COMMIT

• T1: read MySQL server 2

• However, nobody complains

• Future plan

• Put XA logs in high available shared storage

• consistent global snapshot is hard

• 2PL is not acceptable
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High availability
• SYSDB

• Based on replication or DRBD and Linux-HA

• Master

• Master is stateless, all state is in SYSDB (cache state in memory)

• Two masters compete on Zookeeper lease

• New master read all state from SYSDB before going to service

• SQL proxy server

• LVS load balancing

• MySQL

• Same as SYSDB

• Issues

• XA logs on SQL proxy server is not HA

• DRBD and Linux-HA is overkill but replication is not safe.



Other interesting 
findings

• Read replica is useless

• Transactions are more important than 
expected

• Although distributed transactions and 
queries are not always ACID
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• Consistent Memcached integration

• Layered approach for storage engine design

• Scalable RW lock and intention lock

• Dynamic schema

• Tailoring row level cache

• Flash cache in InnoSQL



Typical usage of 
Memcached

• Query

• Search Memcached(GET)

• If miss

• Fetch from DBMS

• Put into Memcached(SET/ADD)

• Update

• Method 1

• Remove from Memcached(DELETE)

• Update database

• Method 2

• Update database

• UpdateMemcached(SET)
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Inconsistency is easy
• Suppose there is an object O(k:v1), not in Memcached initially.  

And suppose there are transactions T1(get O) and T2(update 
O) acting as follows:

• T1: searches Memcached for O, miss

• T1: reads O from DBMS, got(k:v1)

• T2: deletes O from DBMS, miss

• T1: puts O(k:v1) into Memcached

• T2: updates O in DBMS to (k:v2)

• DBMS left with O(k:v2) and Memcached with O(k:v1), 
inconsistency



Seems better
• SET in update, ADD in query

• T2 follows T1

• T1: searches Memcached for O, miss

• T1: reads O(k:v1) from DBMS and ADD into Memcached

• T2: updates DBMS to (k:v2)

• T2: SET Memcached to (k:v2)

• T1 follows T2

• T1: searches Memcached for O, miss. Read O(k:v1) from DBMS

• T2: updates DBMS to (k:v2)

• T2: SET Memcached to (k:v2)

• T1: tries to ADD O(k:v1) to Memcached, skip for already exist

• DBMS and Memcached converge to (k:v2) in both scenarios.
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Inconsistency still 
possible

• Inconsistency scenarios

• Updated item (k:v2) of T2 is replaced, then T1’s ADD(k:v1) will succeed

• If T2 commits after updating Memcached, then:

• If T2 aborts with failure, DBMS rollback but not Memcached

• If T2 commits before updating Memcached, then:

• If failure before updating Memcached, Memcached will not get update

• Two concurrent update transactions leads to inconsistency

• T2: updates DBMS to (k:v2) and commit

• T3: updates DBMS to (k:v3) and commit

• T3: SET Memcached to (k:v3)

• T2: SET Memcached to (k:v2)

• Anyway, SET in update, ADD in query, update Memcached after update DBMS but before 
commit is much safer.



Is strict consistency 
possible?
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Traditional wisdom

ACID System ACID System

Larger ACID System

2PC+2PL

ACID System Non ACID 
System

No Consistency at All

SYSTEM



A consistent protocol
• Query

• GET from Memcached, return if hit a normal row.

• ADD LOCK row with value 0 into Memcached and GETS the version

• Read DBMS

• CAS the LOCK to the record if GETS got a LOCK row with value 0

• Update

• Set a lock, repeating

• GETS from Memcached

• If miss, ADD LOCK row with value 1 into Memcached, end repeating if succeed

• If got a normal row, CAS to LOCK row with value 1, end repeating if succeed

• If got a LOCK row, CAS to LOCK row with value old value +1, end repeating if 
succeed

• Update DBMS and commit

• DECR the lock rowSACC2012SACC2012



Protocol cont.

• How consistency is guaranteed

• LOCK row is a hint that someone is updating the DBMS, value 
of the LOCK row is the number of clients that are updating

• Failsafe

• Query fails, nothing happens

• Update fails, remaining LOCK count will prevent loading 
into Memcached, some performance lost but no 
consistency

• LOCK row can have a modest expiration time

• Entity level consistency only



Consistent friendly 
cache

• Operation requirements

• GET

• GETS

• ADD

• CAS

• DECR:

•  Other requirements

• Version number can not go back even after crash

• LOCK rows can not be swapped out

• Can not restart Memcached too fast, must wait for existing update 
complete
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New wisdom

ACID System Consistent 
Friendly Cache

Entity Level Consistent System

SYSTEM
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Traditional monolithic 
design

• Transaction manager(TM) and data manager(DM) are tightly 
coupled

• Locking is based on physical RID

• Locking is done in data management

• Holding the latch and trylock

• If fails, unlatch, lock and recheck

• Versioning info is embedded in physical records and pages

• Logging is done while holding latch and recovery in based 
on physical info (pageLSN)



Why decouple TM and 
DM

• For flexibility

• Transactional and non-transactional in the same storage engine

• Dynamic shifting between transactional and non-transactional

• For performance

• Want multi versioning but don’t want versioning info overhead

• Versioning info should be only in memory for active 
transactions

• For a new way to database design

• Scalable transaction processing on HBase (HBase as DM)?
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How to decouple? 
Simple but bad way

• No secondary index 
scan

• No snapshot 
isolation

TM using 2PL

DM with KV 
interface

Logical logs

Data Physical logs

No conflicting 
operations

Record level 
atomicity

All operations 
come with PK



The TNT way
• Multi-versioning. However version info only in memory

• Record level version info for heap record

• Page level version for index. Low overhead but achieves  coverage 
index scan most of the time(same as InnoDB)

• No version info for BLOB, use Copy-on-write

• Operations

• INSERT goes to DM directly but put version info in memory

• UPDATE/DELETE goes to memory

• Most recent record version in memory, but older versions in version 
pool

• Purge committed modification to DM periodically

SACC2012SACC2012



Benefits of the TNT 
way

• Can do secondary index scan

• Can do coverage index scan

• Minimal multi-versioning overhead

• Page level version info for index

• No version info in DM

• Low memory consumption

• Only most recent version must be kept in memory

• INSERT goes to DM directly, only version info in memory

• Unmodified index has no new versions



Compared to Falcon
• Falcon

• Recognized to be the future of MySQL storage engine but failed

• Designed by famous database guru, Jim Starkey, father of 
InterBase(the first RDBMS supporting multi-versioning)

• Multi-versions in memory and single version on disk, same as TNT

• Major problems of Falcon

• Every unmerged transaction has his own modified index, so read 
has to merge lots of tiny indice

• Can not do coverage index scan

• New records go to memory, so memory comsuption is higher 
than TNT
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Preliminary 
performance result



New wisdom

• Efficient general transaction processing can 
be built upon an entity level consistent DM 
with little overhead

• With secondary index scan

• With coverage index scan

• With snapshot isolation
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Locks in storage engine
• RWLock

• Catalog lock: lock the catalog to search for the table structure used in 
query

• Table definition lock: lock the table definition to prevent DDLs

• Row lock: lock the rows touched by the transaction

• Page latch: lock the pages touched by the transaction

• Table level intention lock

• Common multi-level lock strategy in DBMS

• IS: Typical SELECTs

• IX: Typical INSERT/UPDATE/DELETEs

• SIX/S/X: Lock upgrade for big transactions
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No scalability 
bottleneck?

• Row lock and page latch: There are many of 
them, so conflicts will not be too often

• Catalog lock, table definition lock and 
intention lock: They don’t conflict for 
typical transaction processing, so no 
contentions at all

• Wrong. Those don’t conflict logically could 
be scalability bottleneck in practice



Scalability of reader 
lock

• Intel Xeon E5645*2,12 
Cores, 24 Threads

• Optimized RWLock with 
single CAS instruction to 
acquire reader lock

• Throughput drops sharply 
from single thread to multi-
thread

• Due to frequent cache 
invalidation 0

12.50
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50.00
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OPS(in millions)
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Scalable Rwlock
• Scalable Rwlock := A collection or normal RWLocks

• Collection size is number of CPU cores in typical setting

• Each normal RWLock is in his own cache line

• rdlock

• Got corresponding normal RWLock 

• Acquire reader lock for that lock

• wrlock

• Acquire all writer locks in the same order

• Scalable and fast for rdlock, slow and not scalable for wrlock



Scalable intention lock

• A hierarchy of  scalable 
RWLock and 
RedBlackLock

• Scalable RedBlackLock

• Red: Lock 
corresponding lock in 
red

• Black: Lock all locks in 
black

• Scalable and fastest for IS, 
scalable and fast for IX, 
slow and not scalable for 
others

s-rwlock

s-rwlock

s-rblock

IS X

IX S

SIX

r
w

r
w

r

w

b
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Benchmark result
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Why dynamic schema?

• InnoDB becomes readonly during ADD/
REMOVE columns

• Online schema change can be done using 
replication or trigger, however you might 
have to wait for hours or even days

• NoSQL is cool. They have no schema and all 
headaches are gone

• Are RDBMS doomed? No!



How to do

• Quite simple

• Modify metadata only when ADD/REMOVE 
columns

• Valid column number in every record

• Missing column is filled automatically using 
default value and removed column is skipped

• Why others didn’t do this? Hard to understand
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Best of the two worlds?

Flexible schame
Consistency 
enforcement

Traditional 
RDBMS

NoSQL

TNT/NTSE

No Yes

Yes(Schemaless) No

Yes(Has schema, on 
the fly modification) Yes
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Why row cache?
• No well known database have row cache

• We have Memcached

• So why integrated row cache?

• Consistency: Data consistency in Memcached can not be 
guaranteed in general

• We only achieve entity level consistency with great effort

• Productivity: Many codes for Memcached and error prone

• Performance

• No network round-trips for manipulating two datasets



Challenges

• Various object size

• Very small object size(10s-100s in Byte)

• Frequent updates

• Competes with page cache
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For various object 
size(1)

• Memory management is nothing special, 
just a slab allocator.

MMS

TableX

TableY

RPCls(<48)

RPCls(49-64)

RPCls(65-80)

Page Page Page

HDR SLOT
64B

SLOT
64B

SLOT
64B

SLOT
64B



For various object 
size(2)

• Replacement policy

• Local row level replacement in same RPCls

• Global page level replacement

• Minimal heap of FPage(access frequency of page). We can not use LRU 
list here.

• FPage = (access frequency of hotest row in page + access frequency of 
coldest row in page)/2

• access frequency of row = 1/(now() - atime)

• How to choose between these two replacement policy?

• A background thread do page level replacement periodically and do row 
replacement in all other situations

• No good measurement to justify the choice
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For small object size

• Compact row level LRU

• Standard way: Doubly linked list, 16 bytes per 
row is a huge overhead

• NTSE’s way: 2 bytes local LRU in page + 
minimal heap of page based on atime of coldest 
row in page => near 2 bytes global LRU

• Compact RID->MMSRecord mapping

• Compact linear hash, 16 bytes/row



For frequent updates
• Can do writeback on updates is a huge advantage over Memcached

• However, a major problem: Lots of IO for flushing dirty records

• First try: Make random IO to sequential IO by sorting dirty records

• This helps in small scale but not enough when row cache is 10s 
of GBs

• Second try: Dump dirty records to log if their corresponding pages 
are not in page cache

• This solves the problem when row cache is 10s of GBs

• We don’t know what will happen when row cache is > 100GB

• what goes around comes around(出来混总是要还的)

SACC2012SACC2012



Coexistence with page 
cache

• A hard problem for DBA: How much memory for row cache 
and how much for page cache?

• InnoDB’s DBA is happy: Just throw all memory to InnoDB’s 
page buffer

• NTSE’s way

• Size of row cache + page cache is fixed

• Size of row cache or page cache can be changed online

• Lots of statistics for DBA to guess a good balance between 
row cache and page cache

• Rule of thumb: 80% to row cache
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Architecture

• SSD as a (much) bigger 
doublewrite buffer

• read cache/write back

• no random write to SSD



Performance

• Even higher than on SSD

• And higher than Facebook’s flashcache(not 
shown)SACC2012SACC2012



General vs. Specialized
• Why InnoSQL’s FC is much more effective than 

general system level solutions?

• Half write IOPS

• No need to update original pages

• No realtime mapping index update

• space_id and page_offset at the header

• No double caching in memory and SSD, caching 
clean pages after swapped out from memory


