

DTCC

DATABASE TECHNOLOGY CONFERENCE CHINA 2013 大数据数据库架构与优化数据治理与分析

Internals Calvin Sun

SequeMedia InnoDB © ChinaUnix

Senior Manager, Twitter

Database BDAAS flowingdata DB2 NoSQL MySQL Oracle Big Data

WHO AM I?

- Calvin Sun (孙春生), email: <u>csun@twitter.com</u>
- Joined Twitter in Mar 2013

2005

MS

- Senior Manager at Oracle, Feb 2008 -Mar 2013
- Manager at MySQL, Jan 2006 Jan 2008

computer science from UST(

 Team lead, product architect at Pervasive Software, Jul 1997 - Dec

Agenda

- Introduction to InnoDB
- InnoDB Data Format
- InnoDB Logging
- InnoDB Execution
- InnoDB Online Operations
- InnoDB Monitoring & Diagnostics
- Get Involved!

Introduction to InnoDB

InnoDB Timeline

MySQL Server Architecture

NoSQL to InnoDB via Memcached API

Fast, simple access to InnoDE

- Accessed via Memcached API
- Use existing Memcached clients
- Bypasses SQL transformations
- SQL/NoSQL access
 - NoSQL for key-value operations
 - SQL for rich queries, JOINs, FKs, etc.
- Implementation
 - Memcached daemon plug-in to mysqld
 - Memcached protocol mapped to the native InnoDB API

 Shared process space for ultralow latency ueMedia

InnoDB Features - Transactions

- Full transaction support
 - Atomicity
 - Consistency
 - Isolation
 - Durability
- SQL-standard isolation levels
- Row-level locking
- Multi-version concurrency control (MVCC)
- Automatic deadlock detection
- Plus
 - Automatic crash recovery
 - Referential integrity

InnoDB Design Considerations

- Modeled on Gray & Reuter's "Transaction Processing: Concepts & Techniques"
 - Next key locking
- Also emulated the Oracle architecture
 - Multi-version concurrency control (MVCC)
 - Undo info in the database, not the logs
 - Tablespaces for data & index storage
- Added unique subsystems/features

InnoDB Innovative Features

- Adaptive Hash Indexes: automatically created on prefix of key for frequent queries
 - Approximates in-memory databases
- Change Buffering: buffers modifications to secondary indexes when the leaf pages are not in the buffer pool
 - Batched merges result in less random access patterns
- Doublewrite Buffer: data first written into the buffer, then flush to the datafiles

reventing partially written pages

InnoDB Data Format

InnoDB Database Files

SequeMedia

ChinaUnix

InnoDB Tablespaces

InnoDB Page Structure

A page consists of: a page header, a page trailer, and a page body (rows or other contents).

Chinal Inix

InnoDB Compressed Pages

- InnoDB keeps a "modification log" in each page
- Updates & inserts of small records are written to the log w/o page reconstruction; deletes don't even require uncompression
- Log also tells InnoDB if the page will compress to fit page size

• When log space runs out, InnoDB uncompresses the

2013中国数据库技术大会page, applies the changes DATABASE TECHNOLOGY CONFERENCE CHINA 2013 ATABASE TECHNOLOGY CONFERENCE CHINA 2013 大数据数据库架构与优化数据治理与分析 and recompresses the page Connaunix

InnoDB Row Format

InnoDB Row Format:

- Redundant: The oldest InnoDB row format
- **Compact:** The default InnoDB row format since MySQL 5.0.3. It has a more compact representation for nulls and variable-length fields
- **Dynamic**: Store long columns entirely "offpage".
- **Compress**: Compress data & index pages from normal page size (16KB) to specified compressed page size

InnoDB Row Structure

InnoDB Logging

ARIES

ARIES, *Algorithms for Recovery and Isolation Exploiting Semantics*, is a recovery algorithm used by almost all modern database systems.

Three main principles lie behind ARIES:

- Write ahead logging (WAL)
- Repeating history during Redo
- Logging changes during Undo

Types of Logging

- Physical logging: changes to data pages and their data record are logged by their byte offsets and byte-for-byte copies of the data.
- Logical logging: page and byte locations do not matter; only the logical operations are recorded in the recovery log.

Why Physiological Logging?

- Smaller log files
- Quick recovery
- Proven: It is the method of choice in modern database systems
- Address fundamental flaw in logical logging: operations are not atomic.
 - Example "insert t in T" requires an update to both a data and an index page. A crash might occur after t has been inserted in T but before the index has been updated
 - Example page split

InnoDB Logging

InnoDB Redo Log

- Physiological logging
- The redo log remembers EVERY operation on any page in the database
- Redo log record format:

SpaceID Page	No Offset	OperationType	Changes on	that page
Changes	(only r	edo values,	no old	values)

- except for DELETEs, which need no change notes at all
- Examples of operations
 - Insert after record at offset 5444
 - Reorganize page 1234

InnoDB Undo Log

A collection of undo log records

	i	
	1	
Brimary Kay Value		Old values on that row
Frimary Rey value		Uld values on that row
	1	1
	1	

- Primary Key Value (no page numbers, no physical addresses)
- Old transaction ID: The ID of the trx that updated that row
- The old field values of that row, which will make the old transaction ID the newest update to the row in question

InnoDB Execution

ChinaUnix

Memory Management

- Buffer pool: data pages; index pages; undo records; adaptive hash indexes; table of lock info
- Log buffer: redo records
- Additional memory pool: cached data dictionary; open table handles
- Multiple buffer pool instancesLRU, MRU

Threads

- User threads (MySQL server threads)
- Master thread
- IO threads
 - read io
 - write io
 - ibuf io
 - log io
- Purge threads
- Page cleaner (flush) thread
- Deadlock detection thread
- FTS, Statistics, Monitor, Drop table, Dump buffer pool, and more

InnoDB Transaction Handling

Checkpointing

- A checkpoint is a log sequence number (LSN) such that: the data pages in the files contain all changes to the database earlier than LSN
- InnoDB's redo log files have a fixed capacity
- The 'age' of the latest checkpoint must not exceed this capacity

If the checkpoint age would become DICC 2013 + BAREST AC ON OLD AND DB writes the Cold Star Consume

Flushing

- Activity of writing dirty pages & logs to the disk.
- There are two types of flushing:
 - LRU flushing, based on LRU_list (roughly ordered on time since last access)
 - Adaptive flushing, based on flush_list (strictly ordered on oldest_modification LSN)

Flushing (cont.)

- Flushing a batch typically involves:
 - Scanning the tail of the relevant list to find victims
 - Select neighbors as candidates for flushing as well
 - Copy dirty pages to the doublewrite buffer
 - Writing double write buffer to disk
 - Sync double write buffer
 - Write to data files
 - Sync all data files

Purging

- Purge is a type of garbage collection.
- Purge includes:
 - Remove obsolete values from indexes
 - Remove delete marked records that will not be seen by any active transaction
 - Remove the relevant undo entries from history list (a.k.a rollback segment)
- Multi threaded purge: perform purge on a periodic schedule

Change Buffer Merging

- Allows changes to secondary index leaf blocks to be deferred when block is not in the buffer.
- Three types of buffering: insert, delete, purge
- Merging
 - Choose random page from the buffer
 - Open a cursor on a random record on that page
 - Read buffer entries from that cursor to find at most 8 pages that should be fetched
 - Issue async IO requests; when async read IO completes, callback is done to apply deferred changes

Prefetching

- buf_read_ahead_random: before requesting a block read:
 - Count number of blocks in extent that were recently read based on position in buffer pool LRU list.
 - If more than 13 were recently read, prefetch others
- buf_read_ahead_linear: may be used when
 - Accessing first or last page in extent
 - Many pages (56) in extent have been accessed
 - Access pattern was sequential
 - When used, issue read requests for extent that contains that page that follows or precedes

Crash Recovery

Commonly, there are 3 phases in Recovery

- There are 4 phases in InnoDB recovery
 - Recover incomplete pages from doublewrite buffer
 - Scan: read redo logs from disk and insert redo log entries into a red-black tree which is sorted on LSN
 - Redo: insert 'dirty' pages into the "flush_list"

DICCU doulging conference china 2013 DATABASE TECHNOLOGY CONFERENCE CHINA 2013 大数据数据库架构与优化数据治理与分析

InnoDB Online Operations

Online Operations in MySQL 5.6 ADD INDEX ADD PRIMARY KEY DROP INDEX ADD COLUMN ADD FOREIGN KEY DROP COLUMN RENAME COLUMN DROP FOREIGN KEY RENAME TABLE ALTER COLUMN NULLABLE ALTER KEY_BLOCK_SIZE ALTER COLUMN NOT NULL ALTER ROW FORMAT

SequeMedia

ChinaUnix

Type of Online Operations

- Metadata only
 - MySQL Server metadata, such as alter column default
 - MySQL Server metadata & InnoDB metadata, such as add/drop foreign key
- Metadata plus w/o rebuilding the table, such as add/drop index
- Metadata plus rebuilding the table, such as add primary index, add column.

How Does It Work?

Pre-preparation Phase

Server

- Determine the algorithm and concurrency level supported by the storage engine.
- Hold MDL_SHARED_UPGRADABLE: allow concurrent DML
- InnoDB

ha_innobase::check_if_supported_inplace_alter()

• Check if InnoDB supports a particular alter table in-place.

Prepare Phase

Server

- Upgrade to MDL_EXCLUSIVE: no concurrent DML allowed
- Build internal objects describing requested changes

InnoDB

ha_innobase::prepare_inplace_alter_table()

- Check whether the alter is legitimate
- Update internal structures
- Create temporary file(s) for change log(s) due to DMLs

Build Phase

Server

- Hold MDL_SHARED_UPGRADABLE: allow concurrent DML
- Let storage engine to carry out the changes requested by ALTER.

InnoDB

ha_innobase::inplace_alter_table()

- Alter the table in-place with operations specified.
- Apply the change logs

Final Phase

Server

- Update .frm and remove old table definitions
- Upgrade to MDL_EXCLUSIVE: no concurrent DML allowed
- Notify storage engine
- Cleanup internal structures

• InnoDB

ha_innobase:: commit_inplace_alter_table()

- Commit or rollback the changes
 - a) Sync and delete the logs
 - b) Commit metadata changes

DICC 2013 Cleanup internal structures

Online Add Index

CREATE INDEX index_name ON table name (column)

	Concurrent User	Source (table)	(cluster) Index	Metadata Lock
Pre- Prepare Phase	Concurrent Select, Delete, Insert, Update	Check whether the online DDL is supported		Upgradable Shared Metadata Lock
Prepare Phase	No concurrent DML allowed	Create temp table for new index (if primary)	Create log files; Logging starts	Exclusive Metadata Lock
Build Phase	Concurrent Select, Delete, Insert, Update	Scan clustered index Extract index entries; Sort / merge index build	DML Logging; Apply logs at the end of create index	Upgradable Shared Metadata Lock
Final Phase	No concurrent DML allowed	Drop old table (if primary)	Update system tables (metadata)	Exclusive Metadata Lock

InnoDB Monitoring & Diagnostics

Overview of Monitoring & Diagnostics

- SHOW ENGINE INNODB STATUS
- InnoDB Monitors
- Performance schema for InnoDB
- Information schema tables
 - Information schema metrics table
 - Information schema for InnoDB system tables
 - Information schema for InnoDB buffer pool

INNODB Show Status and Monitors

- Typical sections of monitor output
 - BACKGROUND THREAD
 - SEMAPHORES
 - LATEST FOREIGN KEY ERROR
 - LATEST DETECTED DEADLOCK
 - TRANSACTIONS
 - FILE I/O
 - LOG
 - BUFFER POOL AND MEMORY
 - ROW OPERATIONS

Performance Schema in InnoDB

- 46 mutexes
- 12 rwlocks
- 7 types of threads
- 3 types of I/O (data, log, tmpfile)
- More with debug binaries

Performance Schema in InnoDB

Types of running InnoDB threads from THREADS table

mysql> SELECT DISTINCT(name) FROM threads WHERE name LIKE "%innodb%"; +------+ | name | +-----+ | thread/innodb/io_handler_thread | | thread/innodb/srv_lock_timeout_thread | | thread/innodb/srv_error_monitor_thread | | thread/innodb/srv_monitor_thread | | thread/innodb/srv_master_thread | | thread/innodb/srv_purge_thread | | thread/innodb/srv_purge_thread | +------+ 7 rows in set (0.00 sec)

Information Schema Tables

- 29 INFORMATION_SCHEMA tables in InnoDB
- 9 Data Dictionary related
- 7 FTS related
- 6 Compression related
- 3 Buffer Pool related
- 3 on Locks / Transactions
- 1 General Statistics gold mine (metrics table)

Information Schema Metrics Table

17 modules, 207 counters

mysql> select DISTINCT	subsystem	from	innodb_metrics	order	by subsyste	em ;
subsystem						
<pre> adaptive_hash_index buffer buffer_page_io change_buffer compression ddl dml file_system icp index lock metadata os purge recovery server transaction</pre>		mys inn + c + 	<pre>sql> select cour odb_metrics; + count(*) + 207 </pre>	nt(*) f	rom	
17 rows in set (0.02 se	ec)	+ 1 r	+ ow in set (0.00) sec)		

InnoDB System Tables

Tables_in_information_schema (INNODB_SYS_%)	 _ +
INNODB SYS DATAFILES	,
INNODB SYS TABLESTATS	
INNODB SYS INDEXES	
INNODB SYS TABLES	
INNODB SYS FIELDS	
INNODB SYS TABLESPACES	
INNODB SYS FOREIGN COLS	
INNODB SYS COLUMNS	
INNODB SYS FOREIGN	

Get Involved!

欢迎莅临

Database BDAAS flowingdata DB2 NoSQL MySQL Oracle Big Data

2013中国数据库技术大会