
InnoDB
Internals

Calvin Sun

Senior Manager, Twitter

WHO AM I?

• Calvin Sun (孙春生)，email:
csun@twitter.com

• Joined Twitter in Mar 2013

• Senior Manager at Oracle, Feb 2008 –
Mar 2013

• Manager at MySQL, Jan 2006 – Jan 2008

• Team lead, product architect at
Pervasive Software, Jul 1997 – Dec
2005

• MS in computer science from USTC (中国科

Agenda

 Introduction to InnoDB

 InnoDB Data Format

 InnoDB Logging

 InnoDB Execution

 InnoDB Online Operations

 InnoDB Monitoring & Diagnostics

 Get Involved!

Introduction to InnoDB

1990 1995 2000 2005 2010

InnoDB Timeline

MySQL Server

CSV

Enterprise

Management Tools and
Utilities

MySQL Enterprise Monitor

MySQL Query Analyzer

MySQL WorkBench

Backup & Recovery

Security

Replication

Cluster

Partitioning

INFORMATION_SCHEMA

PERFORMANCE_SCHEMA

MySQL Server Architecture

 Fast, simple access to InnoDB
• Accessed via Memcached API

• Use existing Memcached clients

• Bypasses SQL transformations

 SQL/NoSQL access
• NoSQL for key-value operations

• SQL for rich queries, JOINs,
FKs, etc.

 Implementation
• Memcached daemon plug-in to
mysqld

• Memcached protocol mapped to the
native InnoDB API

• Shared process space for ultra-
low latency

NoSQL to InnoDB via Memcached API

InnoDB Storage Engine

MySQL Server Memcached plugin

Application

SQL
(MySQL Client)

NoSQL
(Memcached

Protocol)

mysqld

 Full transaction support
• Atomicity
• Consistency
• Isolation
• Durability

 SQL-standard isolation levels
 Row-level locking
 Multi-version concurrency control (MVCC)
 Automatic deadlock detection
 Plus

• Automatic crash recovery
• Referential integrity

InnoDB Features - Transactions

InnoDB Design Considerations

 Modeled on Gray & Reuter’s
“Transaction Processing: Concepts &
Techniques”

• Next key locking

 Also emulated the Oracle architecture
• Multi-version concurrency control (MVCC)

• Undo info in the database, not the logs

• Tablespaces for data & index storage

 Added unique subsystems/features

 Adaptive Hash Indexes: automatically
created on prefix of key for frequent
queries

• Approximates in-memory databases

 Change Buffering: buffers modifications to
secondary indexes when the leaf pages are
not in the buffer pool

• Batched merges result in less random access
patterns

 Doublewrite Buffer: data first written into
the buffer, then flush to the datafiles
• Preventing partially written pages

InnoDB Innovative Features

InnoDB Data Format

ibdata files

Sy
st
em
 t
ab
le
sp
ac
e

internal
data

dictionar
y

MySQL Data Directory

InnoDB
tables

OR innodb_file_per_table

.ibd
files

.frm
files

undo
logs

change
buffer

InnoDB Database Files

doublewrite
buffer

InnoDB Tablespaces

Extent

Segment

Extent

Extent Extent
an extent =

64 pages

Extent

Trx id

Row

Field 1

Roll pointer

Field pointers

Field 2 Field n

Row

Page

Row

Row

Row Row

Leaf node segment

Tablespace

Rollback segment

Non-leaf node segment

RowRow

InnoDB Page Structure

A page consists of: a page header, a page
trailer, and a page body (rows or other
contents).

row offset array

Page header

Page trailer

Row RowRow

Row

Row

Row

Row RowRow

InnoDB Compressed Pages

• InnoDB keeps a
“modification log” in each
page

• Updates & inserts of small
records are written to the
log w/o page reconstruction;
deletes don’t even require
uncompression

• Log also tells InnoDB if the
page will compress to fit
page size

• When log space runs out,
InnoDB uncompresses the
page, applies the changes
and recompresses the page

InnoDB Row Format

 InnoDB Row Format:

• Redundant: The oldest InnoDB row format

• Compact: The default InnoDB row format since

MySQL 5.0.3. It has a more compact

representation for nulls and variable-length

fields

• Dynamic: Store long columns entirely “off-

page”.

• Compress: Compress data & index pages from

normal page size (16KB) to specified

compressed page size

InnoDB Row Structure

prefix(768B) ……

overflow
page

COMACT format

Record hdr Trx ID Roll ptr Fld ptrs overflow-page ptr .. Field values

overflow
page

… …

DYNAMIC format

20 bytes

InnoDB Logging

ARIES, Algorithms for Recovery and
Isolation Exploiting Semantics, is a
recovery algorithm used by almost all
modern database systems.

Three main principles lie behind ARIES:

 Write ahead logging (WAL)

 Repeating history during Redo

 Logging changes during Undo

ARIES

 Physical logging: changes to data pages
and their data record are logged by
their byte offsets and byte-for-byte
copies of the data.

 Logical logging: page and byte
locations do not matter; only the
logical operations are recorded in the
recovery log.

 Physiological logging: physical to a
page, logical within a page, and it codes

the page operation in a concise way

Types of Logging

 Smaller log files
 Quick recovery
 Proven: It is the method of choice in

modern database systems
 Address fundamental flaw in logical

logging: operations are not atomic.
• Example - “insert t in T ” requires an

update to both a data and an index
page. A crash might occur after t has
been inserted in T but before the index
has been updated

• Example - page split

Why Physiological Logging?

DATA

InnoDB Logging

Rollback segments

Log Buffer Buffer Pool

redo
log

rollback
Log File

#1
Log File

#2

log thread

write thread

log files

ibdata
files

InnoDB Redo Log

 Physiological logging

 The redo log remembers EVERY operation on
any page in the database

 Redo log record format:

 Changes (only redo values, no old values)
except for DELETEs, which need no change
notes at all

 Examples of operations

• Insert after record at offset 5444

• Reorganize page 1234

SpaceID PageNo Offset OperationType Changes on that page

InnoDB Undo Log

A collection of undo log records

 Primary Key Value (no page numbers, no
physical addresses)

 Old transaction ID: The ID of the trx
that updated that row

 The old field values of that row, which
will make the old transaction ID the
newest update to the row in question

Primary Key Value Old trx id Old values on that row

InnoDB Execution

InnoDB Architecture: Execution

InnoDB API

MySQL Server

Handler API

memcached plugin

Row Interface for MySQL

IO

Buffer

File Space Manager

Transaction

Cursor / Row

Mini-
transaction LockB-tree

Page

Threading

Logging &

Crash Recovery

Memory Management

 Buffer pool: data pages; index pages; undo

records; adaptive hash indexes; table of

lock info

 Log buffer: redo records

 Additional memory pool: cached data

dictionary; open table handles

 Multiple buffer pool instances

 LRU, MRU

Threads

 User threads (MySQL server threads)
 Master thread
 IO threads

• read io
• write io
• ibuf io
• log io

 Purge threads
 Page cleaner (flush) thread
 Deadlock detection thread
 FTS, Statistics, Monitor, Drop table, Dump
buffer pool, and more

R
e

d
o

L

o
g

In Memory On Disk

L
o
g

F
i
l
e

s
T

a
b

l
e

s
p

a
c

e

Log File 1

Log File 2

Buffer pool

(buffered

data pages)

Add’t’l Mem Pool

Log Buffer

(buffered

log records)

ibdata2

data file

ibdata1

data file

Undo Log

COMMIT

(+ checkpoint)

checkpoint

InnoDB Transaction Handling

Undo Log Undo Log Undo Log

The History List: Committed Undo Logs

Undo Log: Updates, Deletes

Undo Log: Inserts

A transaction

Two undo logs per trx

Undo Log

Discarded

1
0

2
4

s
l
o

t
s

p

e
r

s
e

g
m

e
n

t
,

u

p
t
o

1

2
8

s
e

g
s

T
h

e

h

e
a

d
e

r

o

f

t
h

e

t
r
a

n
s
a

c
t
i
o

n

s
y
s
t
e

m

Rollback segment

used for:

Crash recovery

Read isolation

PURGE

Free unnecessary

log entries

Checkpointing

 A checkpoint is a log sequence
number (LSN) such that: the data
pages in the files contain all
changes to the database earlier than
LSN

 InnoDB's redo log files have a fixed
capacity

 The 'age' of the latest checkpoint
must not exceed this capacity

 If the checkpoint age would become
too old, InnoDB writes the oldest
pages from the flush list to the

Flushing

 Activity of writing dirty pages &
logs to the disk.

 There are two types of flushing:
• LRU flushing, based on LRU_list (roughly

ordered on time since last access)

• Adaptive flushing, based on flush_list
(strictly ordered on oldest_modification LSN)

Flushing (cont.)

 Flushing a batch typically involves:

• Scanning the tail of the relevant list to find
victims

• Select neighbors as candidates for flushing as
well

• Copy dirty pages to the doublewrite buffer

• Writing double write buffer to disk

• Sync double write buffer

• Write to data files

• Sync all data files

Purging

 Purge is a type of garbage collection.

 Purge includes:

• Remove obsolete values from indexes

• Remove delete marked records that will not be
seen by any active transaction

• Remove the relevant undo entries from history
list (a.k.a rollback segment)

 Multi threaded purge: perform purge on a
periodic schedule

Change Buffer Merging

 Allows changes to secondary index leaf
blocks to be deferred when block is not
in the buffer.

 Three types of buffering: insert, delete,
purge

 Merging
• Choose random page from the buffer
• Open a cursor on a random record on that page
• Read buffer entries from that cursor to find at

most 8 pages that should be fetched
• Issue async IO requests; when async read IO

completes, callback is done to apply deferred
changes

Prefetching

 buf_read_ahead_random: before requesting a
block read:
• Count number of blocks in extent that were

recently read based on position in buffer pool
LRU list.

• If more than 13 were recently read, prefetch
others

 buf_read_ahead_linear: may be used when
• Accessing first or last page in extent
• Many pages (56) in extent have been accessed
• Access pattern was sequential
• When used, issue read requests for extent that

contains that page that follows or precedes
this

 Commonly, there are 3 phases in Recovery

 There are 4 phases in InnoDB recovery

• Recover incomplete pages from doublewrite
buffer

• Scan: read redo logs from disk and insert redo
log entries into a red-black tree which is
sorted on LSN

• Redo: insert 'dirty' pages into the
“flush_list”

• Undo: incomplete transactions are rolled back

Crash Recovery

Scan Redo Undo

InnoDB Online Operations

Online Operations in MySQL 5.6

ADD INDEX

DROP INDEX

RENAME TABLE

ADD COLUMN

ALTER ROW FORMAT

ALTER COLUMN NULLABLE

ALTER COLUMN NOT NULL

DROP FOREIGN KEY

ADD FOREIGN KEY

ADD PRIMARY KEY

DROP COLUMN

RENAME COLUMN

ALTER KEY_BLOCK_SIZE

Type of Online Operations

 Metadata only
• MySQL Server metadata, such as alter column default

• MySQL Server metadata & InnoDB metadata, such as
add/drop foreign key

 Metadata plus w/o rebuilding the table,
such as add/drop index

 Metadata plus rebuilding the table, such
as add primary index, add column.

Pre-prepare Prepare Build Final

How Does It Work?

Pre-preparation Phase

 Server

• Determine the algorithm and concurrency
level supported by the storage engine.

• Hold MDL_SHARED_UPGRADABLE: allow concurrent
DML

 InnoDB

ha_innobase::check_if_supported_inplace_alter()

• Check if InnoDB supports a particular alter
table in-place.

Prepare Phase

 Server

• Upgrade to MDL_EXCLUSIVE: no concurrent DML
allowed

• Build internal objects describing requested
changes

 InnoDB

ha_innobase::prepare_inplace_alter_table()

• Check whether the alter is legitimate

• Update internal structures

• Create temporary file(s) for change log(s)
due to DMLs

• Start logging

Build Phase

 Server

• Hold MDL_SHARED_UPGRADABLE: allow concurrent
DML

• Let storage engine to carry out the changes
requested by ALTER.

 InnoDB

ha_innobase::inplace_alter_table()

• Alter the table in-place with operations
specified.

• Apply the change logs

Final Phase

 Server
• Update .frm and remove old table definitions

• Upgrade to MDL_EXCLUSIVE: no concurrent DML
allowed

• Notify storage engine

• Cleanup internal structures

• InnoDB

ha_innobase:: commit_inplace_alter_table()

• Commit or rollback the changes

a) Sync and delete the logs

b) Commit metadata changes

c) Cleanup internal structures

Online Add Index

CREATE INDEX index_name ON table name (column)

Pre-

Prepare

Phase

Prepare

Phase

Build

Phase

Final

Phase

Concurrent User Source (table)

Scan clustered index;

Extract index entries;

Sort / merge index

build

Drop old table (if

primary)

No concurrent DML

allowed

Upgradable

Shared Metadata

Lock

DML Logging;

Apply logs at the

end of create index

Create temp table

for new index (if

primary)

Upgradable

Shared Metadata

Lock

Metadata Lock

Concurrent Select,

Delete, Insert,

Update

(cluster) Index

Create log files;

Logging starts

Update system

tables (metadata)

Exclusive

Metadata Lock

Exclusive

Metadata Lock

Concurrent Select,

Delete, Insert,

Update

No concurrent DML

allowed

Check whether

the online DDL is

supported

InnoDB Monitoring &
Diagnostics

Overview of Monitoring &

Diagnostics

 SHOW ENGINE INNODB STATUS

 InnoDB Monitors

 Performance schema for InnoDB

 Information schema tables

• Information schema metrics table

• Information schema for InnoDB system tables

• Information schema for InnoDB buffer pool

INNODB Show Status and Monitors

 Typical sections of monitor output

• BACKGROUND THREAD

• SEMAPHORES

• LATEST FOREIGN KEY ERROR

• LATEST DETECTED DEADLOCK

• TRANSACTIONS

• FILE I/O

• LOG

• BUFFER POOL AND MEMORY

• ROW OPERATIONS

Performance Schema in InnoDB

 46 mutexes

 12 rwlocks

 7 types of threads

 3 types of I/O (data, log, tmpfile)

 More with debug binaries

Performance Schema in InnoDB

Types of running InnoDB threads from THREADS table

mysql> SELECT DISTINCT(name) FROM threads WHERE name LIKE "%innodb%";

+--+

| name |

+--+

| thread/innodb/io_handler_thread |

| thread/innodb/srv_lock_timeout_thread |

| thread/innodb/srv_error_monitor_thread |

| thread/innodb/srv_monitor_thread |

| thread/innodb/srv_master_thread |

| thread/innodb/srv_purge_thread |

| thread/innodb/page_cleaner_thread |

+--+

7 rows in set (0.00 sec)

Information Schema Tables

29 INFORMATION_SCHEMA tables in InnoDB

 9 Data Dictionary related

 7 FTS related

 6 Compression related

 3 Buffer Pool related

 3 on Locks / Transactions

 1 General Statistics gold mine (metrics
table)

Information Schema Metrics Table

17 modules, 207 counters

mysql> select DISTINCT subsystem from innodb_metrics order by subsystem;
+---------------------+
| subsystem |
+---------------------+
| adaptive_hash_index |
| buffer |
| buffer_page_io |
| change_buffer |
| compression |
| ddl |
| dml |
| file_system |
| icp |
| index |
| lock |
| metadata |
| os |
| purge |
| recovery |
| server |
| transaction |
+---------------------+
17 rows in set (0.02 sec)

mysql> select count(*) from

innodb_metrics;

+----------+

| count(*) |

+----------+

| 207 |

+----------+

1 row in set (0.00 sec)

InnoDB System Tables

mysql> SHOW TABLES LIKE 'INNODB_SYS_%';

+---+

| Tables_in_information_schema (INNODB_SYS_%) |

+---+

| INNODB_SYS_DATAFILES |

| INNODB_SYS_TABLESTATS |

| INNODB_SYS_INDEXES |

| INNODB_SYS_TABLES |

| INNODB_SYS_FIELDS |

| INNODB_SYS_TABLESPACES |

| INNODB_SYS_FOREIGN_COLS |

| INNODB_SYS_COLUMNS |

| INNODB_SYS_FOREIGN |

+---+

9 rows in set (0.00 sec)

Get Involved!

Q U E S T I O N S
A N S W E R S

欢迎莅临

2013中国数据库技术大会

